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A small-scale cyclonic vortex in a relatively broad valley tends to climb up and out 
of the valley in a cyclonic spiral about the centre, and when over a relatively broad 
hill it  tends to climb toward the top in an anticyclonic spiral around the peak. This 
phenomenon is examined here through two-dimensional numerical simulations and 
rotating-tank experiments. The basic mechanism involved is shown to be the same 
as that which accounts for the northwest propagation of cyclones on a 8-plane. This 
inviscid nonlinear effect is also shown to be responsible for the observed 
translationary motion of barotropic vortices in a free-surface rotating tank. The 
behaviour of isolated vortices is contrasted with that of vortices with non-vanishing 
circulation. 

1. Introduction 
Investigations into the propagation of monopolar vortices on a 8-plane (Adem 

1956; McWilliams & Flier1 1979; Mied & Lindemann 1979; among others) have 
clearly established that in the northern hemisphere, the initial tendency for a cyclone 
is to propagate to the northwest. In as much as the role of layer-thickness variations 
is similar in effect to spatial variations of rotation rate (i.e. the p-effect), at least to 
quasi-geostrophic order, one can deduce a rule of ‘local northwest’ propagation of 
cyclones relative to contours of topography. If the horizontal scale of a vortex is 
much smaller than that of the topography over which it lies, then one can model the 
topography locally by a constant slope and, relative to the direction of this slope, 
define local compass directions. Thus by the same mechanism that makes the 
cyclonic vortex move toward the northwest on a &plane, a cyclone over broad 
topography is at any instant expected to propagate toward the local northwest (i.e. 
upslope and toward the left). Thus, a cyclone would climb up out of a valley in a 
cyclonic spiral around the centre, and climb up the slope of a hill in an anticyclonic 
spiral around the peak (see Carnevale et al. 1988). The ‘local northwest ’ propagation 
rule cannot apply when the scale of the vortex is much larger than that of the hill. 
In that case, the theory of large-scale flow over topography applies with the vortex 
acting solely as a large-scale velocity field. The main feature of that phenomenon is 
the creation of an anticyclone over the hill and a cyclone just off the hill (cf. Huppert 
& Bryan 1976; Carnevale et al. 1988). In the intermediate regime, in which the 
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horizontal scales of the hill and the vortex are comparable, numerical simulations 
reveal a scenario built of two limiting cases. The vortex then orbits the peak in a 
manner described below. 

Symmetry implies that for anticyclones the rule is ‘local southwest ’ propagation 
relative to the contours of topography. Thus an anticyclone will move downhill but 
also in an anticyclonic spiral relative to the centre of the hill. For the southern 
hemisphere (i.e. negative Coriolis parameter f ), the terms northwest and southwest 
would need to be interchanged. However, the terms cyclonic and anticyclonic can be 
used without reference to the specific hemisphere (note that cyclonic implies 
counterclockwise/clockwise in the northern/southern hemisphere). Below we shall 
have a northern-hemisphere orientation in mind when speaking of northwest 
propagation. 

The northwest propagation rule should hold for all cyclones. Here we investigate 
two very different types : isolated cyclones, which have no net integrated vorticity 
(i.e. zero circulation), and non-isolated ones, which have non-vanishing circulation. 
We use the term isolated to mean that the velocity distant from the centre of the 
vortex falls off faster than l /r .  One can expect that the isolated vortices will not be 
influenced as much by boundary conditions as vortices of net circulation. We first 
examine the evolution of these vortices on a simple inclined plane in the rotating 
tank. Although both do indeed follow the northwest propagation rule, their paths are 
rather different. Further, the evolution of their structures, in particular with regard 
to the dispersal of passive dye tracer, are substantially different. The inclined-plane 
study is followed by a discussion of the propagation of these vortices over conical 
hills and valleys. Finally, the phenomenon of vortex motion under a free surface in 
a rotating tank is shown to be attributable to the topographic effect of the parabolic 
upper free surface. Through numerical simulations, we verify that the essential 
mechanism in all these cases is inviscid, quasi-geostrophic and barotropic. 

2. Fundamental mechanisms 

geostrophic equation for a single homogeneous layer : 
The numerical simulations which we shall describe are all based on the quasi- 

aq - + V - ( u q )  = 0, 
at 

where u is a divergenceless velocity field, which can be written in terms of the stream 
function $ according to 

Here the potential vorticity, q, is taken to be 

q = V2$+h++py, (3) 

(4) 
AH 

where h is defined by h ( z ,  Y) = fOF, 

with fo the Coriolis parameter, that is, twice the rotation rate, D the mean depth, and 
AH the height of the topography above the mean bottom. 

The term p measures the spatial variation of the Coriolis parameter (i.e. f = 
fo +by). Equation ( 1 )  is equivalent to the conservation of q following particles, with 
the value of the relative vorticity g on the particle determined from its initial value 
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of q and the value of the topography h at the current position. As a particle is 
advected, its relative vorticity changes in accordance with this conservation law. In 
turn the velocity field that this particle induces at some distant point can be 
determined by inverting the Laplacian in the relation [=  V2@, and using the 
definitions in (2). With respect to the laboratory experiments, a 'particle' is 
understood to be a Taylor column of infinitesimal cross-section. Thus, the evolution 
of barotropic two-dimensional flows is governed by the mutual advection of infinitely 
many continuously distributed point vortices that each conserve their potential 
vorticity q. 

Basically we are interested in the evolution of a vortex of relatively small 
horizontal scale over a broad topographic feature. A first understanding of this 
interaction can be obtained by considering the extreme limit of topography of 
constant slope. The /Iy term in the evolution equation ( 1 )  plays the same role as a 
constant-slope topography. The /I-plane problem has been widely studied both 
analytically and numerically (e.g. Adem 1956; McWilliams & Flierl 1979; Mied & 
Lindemann 1979), and also in conjunction with rotating-tank experiments (see 
Firing & Beardsley 1976; Takematsu & Kita 1988; Masuda, Marubayashi & 
Ishibashi 1990). 

In absence of p, topography, and viscosity, a radially symmetric vortex is a 
stationary flow. If only linear radiation is allowed, that is, if the nonlinear evolution 
equation is replaced by the linear Rossby wave equation 

then monopolar vortices radiate non-interacting, linear Rossby waves, and the peak 
of the vorticity field moves due west. In fact, one of the earliest papers concerning 
the motion of vortices on a ,&plane (Bjerkness & Holmboe 1944) predicted a 
westward translation. Flierl (1977) addressed the initial-value problem of a vortex 
with Gaussian stream function t,b - exp ( -2.") on an infinite domain. By showing that 
the so-called Bessel eddies, which have stream function proportional to an ordinary 
zero-order Bessel function, travel steadily westward with a speed depending on their 
spatial scale (as previously noted by Tojo 1953), and decomposing the eddy by 
Fourier-Bessel transform, it can be deduced that the centre of an isolated eddy 
moves westward under the purely linear dynamics. However, the eddy rapidly 
disperses because its energy is radiated away by Rossby waves. Similar conclusions 
were arrived at  by Firing & Beardsley (1976) who considered the initial-value 
problem of an isolated vortex initially in the centre of a closed circular domain. On 
periodic domains, the linear dynamics lead to the same behaviour (see Chan & 
Williams 1987). In all these cases, the Rossby wave radiation wake is symmetric 
about the east-west axis, as i t  must be from symmetry considerations - equation (5) 
as well as the initial and boundary conditions are invariant under the mapping 
Y+-Y. 

Under the full nonlinear evolution equations the behaviour is more complicated. 
In an analytical study of the barotropic vorticity equation on a /?-plane, Adem (1956) 
showed by means of a Taylor series expansion in time that to lowest order in /I the 
O(t) term in the expansion (corresponding to the linear dynamics) predicts a 
westward shift of an isolated cyclone, whereas the O(t2) term adds a northward 
component to it, the latter being a truly nonlinear effect. Such a tendency to move 
northward was pointed out by Rossby (1948) who showed that the average Coriolis 
force acting on a monopole is directed to the north for a cyclone. By combining these 
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two lowest-order terms, it was concluded by Adem (1956) that the initial tendency 
of an isolated cyclone on a P-plane would be to propagate to the northwest. Since the 
barotropic vorticity equation is invariant under the mapping {IjT, y} + { - IjT, - y}, it 
would thus follow that an anticyclone on a /?-plane propagates to the southwest. 
There has been some criticism of Adem’s line of reasoning (see Willoughby 1988), but 
simulations of the full nonlinear equations (McWilliams & Flierl 1979; Mied & 
Lindemann 1959; Chan & Williams 1987; Carnevale et al. 1988; Masuda et al. 1990) 
not only show that this initial tendency is obeyed, but also that the overall tendency 
for many eddy turn-over times of the primary vortex is toward the northwest, 
although the trajectory may become somewhat complicated. An important feature 
of the nonlinear evolution that distinguishes it from the linear evolution is that the 
energy remains fairly localized if the eddy is sufficiently nonlinear, and as such it is 
a coherent nonlinear entity, recognizable over long periods. Carr & Williams (1989) 
have performed a study of the mechanisms accounting for the dispersion-resistant 
properties of vortices on a /?-plane. Similar results are found in the laboratory 
experiments that will be described below. Speed and direction have been found to 
depend on amplitude and spatial extent of an isolated vortex (see McWilliams & 
Flierl 1979; Mied & Lindemann 1979; Chan & Williams 1987). In  the present study 
we contrast the behaviour of an isolated vortex with that of a non-isolated vortex. 
We find that although both kinds do show propagation to the local northwest, there 
are important differences in their trajectories and the evolution of their structure. 

Observation of the vorticity fields in the numerical simulations suggest that the 
mechanism behind this tendency to move northwestward is the early evolution of a 
dipolar perturbation field on the initial monopolar structure. This comes about by 
the cyclonic advection of fluid around the central core and the conservation of 
potential vorticity on the advected fluid. Particles to the east of the core moving 
northward must decrease their relative vorticity while those to the west of the core 
moving southward increase their relative vorticity. Owing to the radial symmetry of 
the initial velocity field this generation of vorticity anomaly results in a distortion 
of the shape of the initial vortex that can be described as a dipolar perturbation 
vorticity field with its axis oriented toward the northwest. The whole structure is 
then carried toward the northwest by the velocity field induced by this dipolar 
perturbation. The precise angle of the trajectory depends on the structure of the 
initial vorticity distribution. After this initial phase, the motion can be more 
complicated as satellite vortices are created and possibly shed (see $3.1). 

3. Rotating-tank experiments 
To test the predictions of the numerical simulations, we performed a series of 

rotating-tank experiments. The tank has a diameter of 92.5 cm. The level of water 
in the experiments waa 20 cm and the rotation rate (counterclockwise when seen 
from above) was adjusted to a period of either 6.1 s or 10.4 s. This corresponds to a 
rotation rate of the table of approximately 52 = 1 rad s-l and 52 = 0.6 rad s-l 
respectively. The upper surface was left free, and various topographies were used on 
the bottom of the tank. After the fluid has spun-up to solid-body rotation, the free 
surface assumes a parabolic profile, which can be represented in the quasi- 
geostrophic equations by an ambient potential vorticity, 
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FIGURE 1.  Graphs showing the radial distribution of azimuthal velocity of (a) a sink vortex with 
p x 4 s-l and x 3.5 cm, and ( b )  a typical stirred vortex of vorticity amplitude p x 6 s-l and 
horizontal scale cr x 4 cm. Measured velocities are indicated with black dots while the solid lines 
are the ideal profiles given by equations (7)  and (9). 

where R is the horizontal distance of a point from the centre of the tank and fo = 2 8 .  
The topographic features that we examine here all have slopes considerably greater 
than that of the free surface, thus making the effect of the free-surface curvature 
negligible in comparison to the bottom topography. However, the case of flow on a 
flat bottom under this free surface has also proved very interesting (see 93.4). 

The experiments were initialized by the creation of cyclonic vortices. The vortices 
are readily created by either stirring or by suction. In the suction method, water is 
siphoned from the bottom of the tank. In  the stirring method, a bottomless cylinder 
of small diameter is placed in the tank and the fluid confined within is stirred until 
a vortex is formed. Then the cylinder is removed from the tank, leaving behind an 
isolated cyclone. In  some experiments the fluid in the vortices was dyed. After a 
period of adjustment, the two-dimensionality of the flow was evident in that the 
sheets of dye in the fluid were vertical as in well-formed Taylor columns. A record of 
the evolution of the flow was kept by photographing tracer particles on the free 
surface. Laboratory experiments with anticyclonic vortices are not discussed in this 
paper because special care is needed to generate anticyclones since, unless they have 
Rossby numbers well-below O( l ) ,  they are centrifugally unstable (see Kloosterziel & 
van Heijst 1991). 

Sink vortices were created by inserting a tube of a small diameter ( - 2 cm) into 
the tank and siphoning a fixed amount of water a t  the bottom. On a flat bottom, 
after a short adjustment period, the resulting vortex typically has an azimuthal 
velocity distribution as shown in figure 1 ( a )  The data points are approximated by the 
solid curve given by 

The corresponding vorticity field for this profile is 
vsink(r) = (a2,u/r) (1 -exp ( - r 2 / 2 a 2 ) ) .  

dlnk(r)  = ,u exp ( - r2 /2a2) .  

(7)  

(8 )  
Here p is the peak vorticity strength, IJ the horizontal lengthscale, and T the distance 
from the centre of the vortex. Note that this vorticity distribution is single signed, 
as opposed to the vorticity distribution of a stirred vortex, and that the sink vortex 
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has non-vanishing circulat.ion and thus is not isolated. Griffiths & Hopfinger (1987) 
noted that barotropic sink vortices are reasonably well described by the Rankine 
vortex model - which has a constant-vorticity core surrounded by potential ( l / r )  
flow -but  that in fact the vorticity varies in the core, and that the peak of the 
velocity is rounded near the radius of maximum velocity. The profile given by (8) has 
all these properties and is representative of the structure of the sink vortex shortly 
after the forcing has stopped. 

A typical example of the measured, azimuthal velocity distribution of a stirred 
cyclonic vortex, on a flat bottom, is shown in figure l ( 6 ) .  The data points are fitted 
by the profile given by 

which is represented by the solid curve in figure l ( 6 ) .  The vorticit.y field implied by 
(9) is 

uStir(r) = ipr exp ( - r2/2rr2),  

Cstir(r) = p( 1 - rz/2rrz) exp ( - r2/2rr2).  

(9) 

(10) 

The Rossby numbers c of tshe vortices typically used in the laboratory experiments 
are initially not small. Based on the peak velocity and a lengthscale L equal to the 
radius at which the peak velocity is found, i.e. E = vmaX/(Qrmax), initial Rossby 
numbers of typical laboratory vortices studied here are O( 1). For quasi-stationary, 
circularly-symmetric swirling flows with Rossby numbers of t’his magnitude, one has 
gradient-wind balance instead of geostrophy (see Holton 1979). However, owing to 
lateral diffusion of momentum and bottom drag by the Ekman layer in the 
laboratory, these vortices rapidly enter thc geostrophic regime. Since the aspect ratio 
is 0(1), even for small Rossby numbers the validity of the quasi-geostrophic 
equations for laboratory vortices cannot be strictly justified on the basis of a scale 
analysis. Another point is that the topography used in the laboratory experiments 
is not truly shallow. However, as was noted by McWilliams, Gent & Korton (1986) 
and Mied & Lindemann (1979), in many cases the assumption of quasi-geostrophy for 
modelling purposes gives qualitatively satisfying results. We have used the quasi- 
geostrophic equations to model the processes observed in our rotating-tank 
experiments and as shown below the agreement can be very good. As a final point, 
it should be mentioned that in the numerical experiments the Rossby deformation 
radius was  put equal to infinity (‘rigid lid’ approximation). The experimental 
parameters correspond to a Rossby deformation radius, 

of 1 m for the low rotation rate, and 0.65 m for the high, taking the average depth 
over the topography as D = 17.5 cm. We neglect the finite-deformation-radius effect 
in the first approximation when considering phenomena with lengthscales of 
approximately 1&20 em. Numerical experiments by Holloway, Riser & Ramsden 
(1986) indicate that neglect of this term, in our parameter range, will not 
significantly change the path of the vortex on the /$plane. 

Once created the cyclones spin down at a rate which is well explained by the 
bottom drag due to  Ekman pumping combined with lateral diffusion of momentum. 
The Ekman dynamics alone provide a rate of decay that is close to constant in the 
absence of any topography and is given approximately by the Ekman timescale 

D 
t -- 
- (&)t‘  
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which is incorporated into the quasi-geostrophic equations according to 

Note that this is the decay rate appropriate to a flat but stress-free surface and a flat 
bottom. In  the case of a rigid, no-slip, upper surface the Ekman decay rate is doubled 
(cf. Pedlosky 1979). For the parameters of these experiments (v = 0.013 cm2s-l, D x 
15-20 cm, SZ = 0.6, 1 rad s-l, where v is the molecular kinematic viscosity for water 
at 10 "C), this corresponds to an Ekman e-folding time of about 150 s for the high 
rotation rate and 200 s for the low, based on the average value D = 17.5 cm. The 
second term on the right-hand side of (13) represents the ordinary Laplacian 
diffusion of momentum. For the experimental regime investigated here Laplacian 
diffusion and Ekman damping have comparable effects on the amplitude decay of the 
vortex. This can be seen by directly comparing the timescales t ,  and t ,  = a 2 / v ,  which 
are of the same order of magnitude. Also, we can calculate the exact solutions of (13) 
including both these mechanisms for the flat-bottom problem. The evolution of 
vortices initially (at t = 0) given by (8) and (lo), is found to be 

and 

ye-tltE - r2 
t ,  = (2v t /a2)  + 1 { 2a2 + 4vt} 

(see Kloosterziel 1990). Consider the effect of linear decay after one Ekman period of, 
say, t ,  = 200 s. The Ekman decay alone reduces the amplitude by a factor of e-l x 
0.37. For the stirred vortex, with a - 2.5 cm, the diffusion reduces the amplitude by 
an additional factor of about 0.37. For the sink vortex with a - 2.5 cm diffusion 
introduces an additional factor of 0.7. Thus, in both cases, diffusion can add 
considerably to the rate a t  which the vortices decay during the first Ekman period, 
and cannot be neglected if a quantitative match between simulations and 
experiments is sought. The duration of the laboratory experiments varied from 
about half an Ekman period up to three times the Ekman period, depending on the 
initial strength and path of the vortex. 

In  what follows we compare our laboratory results with numerical simulations of 
equation (13). These are spectral simulations in a doubly periodic domain using the 
dealiased Fourier scheme of Patterson & Orszag (1972). The resolutions used 
correspond to grids with N x N points, with N = 64, 128 and 256, with fast Fourier 
transforms converting the configuration-space fields into the corresponding wave- 
vector amplitude description with the same number of variables. Questions of the 
adequacy of resolution for a particular case were checked by doubling N and 
rerunning the simulation. The influence of domain size over the course of an 
experiment was checked by performing the same numerical simulation with three 
different box sizes (50 x 50 cm, 100 x 100 cm and 200 x 200 cm), with the number of 
gridpoints per unit area held fixed. 

3.1 8-plane experiments 
We begin our discussion with the case of the behaviour of a cyclone on a 8-plane. In  
the tank one does not have a position-dependent rotation rate; however, the p-effect 
can be mimicked by an inclined plane on the bottom of the tank, a t  least at the level 

5-2 
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FIGURE 2. Graphs showing the trajectories of sink and stirred vortices on an inclined plane. The 
figure is oriented so that the shallowest end of the tank (i.e. the ‘north’ side) is at the top of the 
page. The vortices move from ‘southeast’ to ‘northwest.’ The positions of the laboratory sink 
(stirred) vortex are indicated by squares (circles). The data points for the sink vortex were taken 
at the following times after the cessation of forcing: 20,25, 30, 35,40,45,50,60 and 65. The data 
points for the stirred vortex were taken at  the following times after the removal of the cylinder in 
which the vortex was created : 7, 10, 15, 20, 25, 30, 35,40,45, 50,55,65, 70,80, 90, 100 and 115 s. 
The solid (dashed) curves show the trajectories of the vortices in the corresponding viscous 
(inviscid) one-layer, quasi-geostrophic, numerical simulations. The duration of the trajectories 
shown for the viscous simulation for the sink (stirred) vortex is 54 (112) s, while for the inviscid 
simulation it is 53 (80) s. The computational domain size is 50 x 50 cm. 

of quasi-geostrophic approximation, and the appropriate correspondence is deduced 
from equations (3) and (4). Here we use a plate 50 cm wide and 75 ern long. It was 
raised at one end of the tank to a height of 10 em, giving the slope 10/75. This is 
represented in the quasi-geostrophic equations by an ambient potential vorticity h 
= ( f o s / D )  y, where s is the slope of the plane. In  most experiments the vortices 
travelled over no more than half the plate towards the north, and thus we use 17.5 cm 
as the mean depth D in our calculations. In  this section, we show experiments with 
the low rotation rate (f, = 1.2 s-l) for which the effective p is 0.914 

The behaviour of both sink and stirred vortices over the inclined plane has been 
investigated. Figure 2 shows two typical trajectories : one for a sink vortex (squares) 
and one for a stirred vortex (circles). We also show the corresponding trajectories 
from numerical simulations of the viscous flow (solid lines) and the inviscid flow 
(dashed lines). The position of the vortex centre a t  consecutive moments has been 
determined from streakline photographs. The last shown data point for the sink 
(stirred) vortex trajectory was taken a t  65 (115) s after the creation of the vortex. 
The latest points shown on the simulated viscous trajectories correspond to times 54 
and 112 s for the sink and stirred vortex respectively. The initial strength and scale 
of the sink vortex for the simulation were estimated from the experiment streakline 
photographs a s p  = 3.3 s-l and g = 2.5 cm (cf. (10)). For the stirred vortex simulation 
p = 6 sP1 and g = 4 cm were used (cf. (8)). These are the same values as are 
represented by the idealized stirred vorticity profile shown in figure 1. In  the viscous 
case, the Ekman time in (13) was taken to be 200 s, a value appropriate for the 
rotation rate IR = 0.6 s-l. The numerical simulations reproduce the trajectories of the 
rotating-tank experiments fairly well. Thus, we conclude that the propagation 

cm-ls-l. 
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toward the ‘northwest ’ observed in these tank experiments is the barotropic, quasi- 
geostrophic phenomenon as discussed above. In the inviscid simulations one has v = 
0 and t ,  = 00 in (13). The fact that trajectories in the inviscid cases do not deviate 
much from those of the viscous case, especially at early times, shows that the 
essential character of the dynamics is inviscid. 

There is a qualitative difference between the trajectories of the sink and stirred 
vortices. The sink vortices in the rotating-tank experiments have a simple smooth 
arc for a trajectory. The trajectories of the stirred vortices are more complicated. 
Typically, the path of the stirred vortices has a bend, although the direction remains 
northwest. Numerical simulations show that the degree of this bend depends on 
domain size : the larger the domain size, the smoother the trajectory. The portion of 
the trajectory before the bend is uninfluenced by quadrupling the domain size. This 
is because in the early part of the motion the annulus of negative vorticity shields the 
core in such a way that no significant Rossby wave radiation is produced. At  later 
times there is significant Rossby wave radiation, and since the simulations and the 
experiments are not on an infinite plane, this radiation is not lost and can interfere 
with the primary vortex. Thus, we find that the later stages of the trajectory are 
influenced by domain size variations. In some cases, there are significant differences 
between the trajectories of the simulation and the experiment near the end of the run 
due to the different boundary conditions. On the other hand, the motion of the sink 
vortex is strongly affected by domain size variations even at the earliest times, with 
changes of 50% in the slope for the first 10 s of the trajectory induced by doubling 
the domain size from 50 to 100 cm. Actually, the smoothness of the sink-vortex 
trajectories in the tank is a fortuitous result of the size of the initial vortex, for in the 
numerical simulations we find that doubling the horizontal scale of the vortex 
produces a bend in the sink-vortex trajectory. A previous study showing trajectories 
of barotropic laboratory sink vortices over an inclined plan is that of Masuda et al. 
(1990). Their trajectories have sharp bends. We believe the difference in behaviour 
is due to the relative importance of boundary effects. Judging from the graphs shown 
by Masuda et al., the horizontal scale of their vortices is much larger relative to the 
size of the tank than in our experiments. It should be noted that, contrary to our 
usage, Masuda et al. refer to their sink vortices, which do not have vanishing 
circulation, as isolated vortices. 

To illustrate one of the differences between the evolution of the sink and stirred 
vortices, we show in figure 3 the vorticity fields from the viscous simulations of figure 
2. The main feature of the sink evolution (figure 3a) is the creation of a dipole pattern 
which persists with the induced anticyclone remaining to the northeast of the 
primary cyclone. The stirred vortex starts as an annulus of negative vorticity around 
a positive core. On thef-plane such vortices are prone to a wavenumber-2 instability 
(Gent & McWilliams 1986; van Heijst & Kloosterziel 1989; Kloosterziel & van Heijst 
1989). As this instability proceeds it deforms the core into an ellipse and causes the 
negative relative vorticity in the annulus to collect into two satellite anticyclones, as 
is shown in figure 3 6. The whole structure rotates about its centre and, due to the 
/3-effect, moves toward the northwest. 

Another interesting difference between the sink vortices and the stirred vortices is 
observed if they are initially dyed. All of the dye initially dispersed near the centre 
of a laboratory sink vortex is carried along with it, encircling the centre and leaving 
behind almost no trace in the wake. In contrast, the stirred vortices ‘leak’, that is, 
fluid from the outer ring of the vortex is peeled off the core and left behind in a long 
tendril. The tendril formation is shown in figure 4 in a sequence of nine photographs. 
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FIQURE 3. Plots of relative vorticity values, showing the difference between sink and stirred vortex 
evolution. (a )  Relative vorticity levels of the sink vortex on a p-plane in the viscous numerical 
simulation at time t = 40 s. Black represents positive relative vorticity above the value 0.2 s-l. 
Negative relative vorticity below -0.2 s-l is shaded in deepening shades of grey in steps 
representing magnitude increments of 0.2 s-'. ( b )  Relative vorticity contours of the stirred vortex 
at time t = 50 s in the viscous simulation. The peak vorticity is 1.5 s-l. Positive relative vorticity 
above 0.4 2-' is shown in black. Negative relative vorticity below -0.4 s-l is shaded in deepening 
shades of grey in steps representing increments of magnitude 0.4 s-l. The computational domain 
size is 50 x 50 cm. 

A corresponding sequence of grey-scale plots of passive-scalar evolution from a 
numerical simulation corresponding to  this experiment is shown in figure 5.  The 
simulation used a stirred-vortex profile chosen to approximately match the initial 
amplitude (y = 5 s-l) and horizontal size (a = 3.5 cm) of the laboratory vortex whose 
evolution is shown in figure 4. The resolution employed was 128 x 128 grid points on 
a domain of size 75 x 75 cm. In the simulation, the passive scalar was initially 
distributed uniformly over the vortex from the centre out to the point of maximum 
negative relative vorticity, and from there it rapidly dropped to  insignificant levels. 
The time sequence of the experiment and the simulation shown in figures 4 and 5 is 
the same. The simulation captures all the features seen in the tank experiment, and 
the phase correspondence is good except in the last frame (panels i). In  a numerical 
study in which an isolated vortex propagates into a field of passive tracer, Holloway 
et al. (1986) showed the formation of a tendril in the dye field. They also showed the 
formation of the dye patch a t  the end of the tendril, which is seen in our data as well. 
We note, however, that a prominent feature in our experiments is the formation of 
patches or 'blobs ' of dye that are left strung along the tendril. These features are not 
noted in the Holloway et al. (1986) simulations. The formation of these blobs occurs 
a t  the primary vortex. The blobs are formed by a repetitive process of enfolding and 
extruding fluid. As discussed above, the stirred vortex undergoes an instability 
which creates two anticyclones out of the annulus of negative relative vorticity. 
These form the cores for the first two blobs. As a blob is advected around the core 
an intrusion of undyed fluid forms, separating i t  from the main core. When the blob 
reaches the northeastern side of the core it is pushed against the tendril and is left 
there as the main core continues to move to the northwest. There is an intrusion of 
undyed fluid between the tendril and blob, which encircles the core and forms the 
next bulge in the sequence. A new intrusion of undyed fluid between the blob and the 
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FIGURE 4. Plan-view photographs showing the evolution of the dye concentration in a stirred 
vortex moving uphill over an inclined plate in the rotating tank. The vortex was created near the 
deepest part of the fluid layer (at the bottom of the photographs) by stirring in a cylinder with a 
diameter of 11 cm. All dye was initially contained in the inner cylinder before the release of the 
vortex. The plate was 50 cm wide by 75 cm long. It was raised 10 cm on the ‘north’ side (top of 
the figure). The largest depth of the fluid was 20 cm. The photographs were taken at (a) t = 3.8T, 
( b )  4.6T, (c) 5.3T, (d) 6.OT, ( e )  6.6T, (f) 7.7T, (9)  8.7T, (h) 10.6T, and (i) 14.4T after lifting the 
cylinder, where T = 10.4 s is the rotation period of the turntable. The total duration of this 
experiment was 150 s. 
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FIGURE 5. Shaded contour plots of the passive scalar field in the numerical simulation corresponding 
to the rotating-tank experiment shown in figure 4. Undyed fluid is shown in black, while dyed fluid 
is represented in shades of grey with the lightest representing the highest concentrations. Except 
for an overall shift due to ambiguity in defining the initial moment in the laboratory experiment, 
the times corresponding to each panel are exactly the same as in the panels shown in figure 4. The 
computational domain size is 75 x 75 cm, of which only a portion of 50 x 75 cm is shown. 
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FIGURE 6. Graphs showing the trajectories of cyclones over a conical valley. The rotation rate of 
the turntable was SZ = 1.0 s-'. The depth of the fluid layer in the centre of the tank was 20 cm, and 
near the tank wall 15 cm. (a) Typical sink and stirred vortex trajectories in the laboratory 
experiments. The data points on the sink vortex trajectory (squares) correspond to times 51, 70, 
90, 110, and 132 s after the forcing of the vortex ceased. The data points on the stirred vortex 
trajectory (circles) correspond to times 6, 24, 44, 67, and 92 s after the vortex was released. The 
vortices were generated near the centre of the valley (marked +) and then spiralled out. (a) 
Trajectories from numerical simulations of vortices over a conical valley. The duration of the 
numerical simulation with the sink vortex (solid line) was 54 s whereas the simulation with the 
stirred vortex (dashed line) lasted 160 s. The final bend in the sink-vortex trajectory is an artifact 
of the periodic boundary conditions. The computational domain size is 100 x 100 cm. 

core eventually moves around the core, and when its head is on the southwest side 
of the main core, it begins to form another blob. By the time of panel (9)  of figure 4 
several blobs have already been formed. Blob number 3 is the one sandwiched 
between the tendril and the core. The intrusion between blob 3 and the tendril is 
connected with blob 4, which is on the west side of the core in panel (9) .  The intrusion 
between blob 3 and the core will eventually be wrapped up in blob number 5. The 
proportion of undyed to dyed fluid in successive blobs is an increasing function of 
time. When each blob is deposited on the tendril, it first appears as an elongated 
structure, and several may be closely packed on the tendril; later the blobs separate 
and begin t o  relax to a more circular form. The result is a string of blobs along the 
tendril (see panel i ) .  This phenomenon was found to be easily reproducible in the 
laboratory. The ability of the simulations to capture this process allows us to 
conclude that the underlying mechanism is two-dimensional and quasi-geostrophic. 
Furthermore, this process also occurs in inviscid simulations, which shows that 
explicit viscosity is not essential here. 

3.2. Conical-valley experiments 
A series of laboratory experiments was performed in which cyclones were created on 
the slope of a conical valley. The bottom of the rotating tank was covered entirely 
by an inverted right-circular cone. The maximum depth was approximately 20 cm at 
the centre, sloping to 15 cm at the tank wall. The rule of propagation to the local 
northwest predicts that a cyclone spirals up and out of the valley in a cyclonic sense. 
Trajectories of a typical sink vortex and a typical stirred vortex are shown in figure 
6(a). The data points for the sink (stirred) vortices are indicated by squares (circles). 
Both vortices were created near the centre of the valley and move outward in time. 
Note that the stirred vortex shows a nearly radial trajectory, which is locally 
' northward ', whereas the spiral of the sink vortices indicates a more northwestward 
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FIGURE 7. Graphs showing relative vorticity levels at  time t = 30 s in the viscous numerical 
simulation of (a) sink and (b )  stirred vortices over a conical valley. The centre of the valley is 
marked + in each plot (not visible in a but at  the same position as in b) .  The computational domain 
size is 100 x 100 cm. In (a), the sink vortex creates a secondary cyclone over the centre of the valley 
as discussed in the text. The small secondary cyclone at the centre has an amplitude of about 10% 
of that of the primary vortex. Positive relative vorticity above the value 0.2 s-l is coloured black. 
Kegative relative vorticity below the value of -0.2 s-l is indicated by light grey. In (b ) ,  the core 
of this stirred vortex has a maximum vorticity amplitude of 3.2 s-'. Positive relative vorticity 
above the value 0.1 s-l is coloured black. Negative relative vorticity is shaded in deepening shades 
of grey in steps representing increments of magnitude 0.1 s-l. 

angle locally with the gradient of topography. This observation is qualitatively in 
accordance with the results of § 3.1, where the stirred vortices on a /?-plane were seen 
to have a larger northward component in their overall motion than the sink vortices. 
These experiments were performed with the high rotation rate Q = 1 s-l; others 
performed with the lower rate l2 = 0.6 s-l showed qualitatively similar results. 

In  figure 6 ( b ) ,  we show the results of viscous numerical simulations with conditions 
corresponding to the experiments shown in figure 6 (a ) .  For the sink vortex the initial 
parameters used are u = 3 em and p = 5 s-l, and for the stirred vortex u = 2.5 cm 
and p = 3.3 s-'. The initial position of the vortices in the simulation was 5 cm from 
the centre of the valley. The qualitative difference between the paths of the isolated 
stirred vortices and the sink vortices seen in the experiments appears in the 
simulations too. For the sink vortex the cyclonic sense of the spiral is clear, while the 
stirred vortex tends to follow a more radial path outward. A series of simulations was 
performed which revealed that these trajectories are very sensitive to changes in the 
initial amplitude, size and, in particular, position of the vortices. Thus obtaining a 
good quantitative match here would require very precise parameter tuning beyond 
what is warranted for present purposes. I n  the simulation of the sink vortex, the final 
bend in the trajectory before the vortex leaves the computational domain is an 
artifact of the periodicity of the topography, as has been verified by increasing the 
domain size. Even in the tank we must expect that, as the wall is approached, the 
details of the motion are strongly affected by the boundaries, especially in the case 
of the sink vortices. Finally, we note that the trajectories were not qualitatively 
different in the inviscid simulations. 

Figure 7 shows the relative vorticity fields at time t = 30 s of the simulations 
depicted in figure 6 ( b ) .  Figure 7 ( a )  shows the dipolar structure which forms as the 
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FIQURE 8. Graphs showing the trajectories of sink vortices over a conical hill as observed (a) in the 
laboratory and (b) in a viscous numerical simulation. The laboratory vortex was created by 
siphoning 3.5 1 of water in 13 s at the bottom of the tank (on the sloping hill). The rotation rate of 
the table was f2 = 0.6 s-l, the height of the conical hill 5 cm, and the average water depth, halfway 
between the centre of the tank and the tank wall, was D = 17.5 cm. The position of the vortex was 
determined from streakline photographs every 15 s. The entire trajectory of the laboratory vortex 
shown in (a) covers a period of 280 s. In (b) the duration of the numerical experiment was 300 s. 
The computational domain size is 100 x 100 cm. Further details are given in the text. The peak of 
the hill is marked +. 

sink vortex moves away from the centre. This structure is in accord with our local 
view of the propagation. However, a small cyclonic vortex is also created directly 
over the centre of the tank. This can be understood in terms of the theory of large- 
scale flow over topography (see Huppert & Bryan 1976). An impulsively started, 
large-scale flow over a topographic valley creates a stable cyclone directly above the 
centre of the valley. This occurs because quiescent fluid advected over the centre 
must develop positive relative vorticity in order to maintain its initial zero potential 
vorticity. This secondary cyclonic flow can be maintained against viscous decay as 
long as the large-scale forcing continues to operate, and the primary sink vortex can 
act  as the large-scale flow in this mechanism (cf. Carnevale et al. 1988). The presence 
of the fixed secondary cyclone in the centre of the tank can only increase the local 
westward speed, thus resulting in a tighter spiral than would otherwise result from 
the local northwest propagation mechanism. Finally, in figure 7 ( b )  we see that the 
stirred vortex does not induce a cyclone over the centre of the valley. This is due to 
the isolated character of the stirred vortex. 

3.3 Conical-hill experiments 
Another series of experiments was performed with the bottom of the tank covered by 
a conical hill. In this case, the shallowest point was 15 cm deep at  the centre of the 
tank, while the deepest section was 20cm deep along the tank wall. The local 
northwest rule implies that a cyclone will spiral toward the top of the hill in an 
anticyclonic sense. 

An example of a trajectory of a sink vortex created far from the peak of the hill 
in the tank is shown in figure 8(a) .  The initial tendency is, indeed, an anticyclonic 
spiral in toward the centre of the tank. However, as the vortex approaches the 
centre, the motion is transformed into a looping motion about the centre, which is 
not in agreement with the local northwest propagation rule. Owing to the overlap of 
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loops, we have not shown data points on this trajectory. The duration of the 
trajectory is 280 s during which the vortex executes about three full loops around the 
centre of the hill. By varying the strength and initial position of the vortex, we have 
observed a variety of trajectories, all of which have an anticyclonic looping around 
the peak in common but with varying degree of initial inward motion. In  fact, 
vortices created close to  the top merely execute a circular motion from the outset. 

In figure 8 ( b )  the result from the viscous simulation of the experiment of figure 
8 ( a )  is shown. The Ekman time (200 s) for the viscous simulation was based on the 
average depth D = 17.5 cm, with Q and v as in Q 3.1 and {,u,a} = (5  s-', 3 cm}. The 
duration of the simulation was 300 s. The simulation uses topography which 
corresponds to the shape of the cone. The corresponding inviscid simulation gives 
qualitatively the same behaviour as shown in figure 8 ( b ) ,  except with a higher 
number of loops. 

The failure of the local northwest rule to  predict the looping motion implies that 
some non-local mechanisms must come into play as the vortex approaches the peak. 
This is not entirely surprising. Our rule was formulated under the assumption that 
the characteristic lateral scale of the vortex is small compared to the scale of the 
horizontal gradients of topography. However, near the peak of the topography the 
horizontal topographic scales become comparable if not smaller than that of the 
vortex. The degree to  which the vortex climbs the hill and the complexity of the orbit 
depend on the size, strength, and position of the initial vortex. This has been 
examined systematically in a series of numerical experiments. The motion is more 
inward initially if the horizontal scale of the sink vortex is small. Sink vortices placed 
farther from the centre of the cone have a larger inward component to the initial 
motion than when placed near the centre. If sufficiently wide or sufficiently close to 
the peak of the topography, they have nearly circular trajectories, which agrees with 
the rotating-tank experiments. The motion close to the peak can be understood in 
terms of the theory of large-scale flow over topography as discussed in the previous 
section. Large-scale flow over a hill produces an anticyclone over the peak. In some 
simulations the creation of a separate patch of negative vorticity over the peak was 
clearly observed. The vortices that execute nearly circular trajectories have created 
a negative vorticity anomaly over the peak, which blocks further advancement of the 
primary vortex up the cone and carries the primary in an anticyclonic manner about 
the peak. Modification of the topography shows that vortices approach closer to  the 
centre of a cone if the peak is removed. Finally we note that stirred vortices on the 
conical hill show trajectories that are almost directly inward towards the peak, that 
is, with no looping motion. This is because the stirred vortex is an isolated structure, 
which, from a distance, cannot induce an anticyclone over the peak. 

3.4. EfSects of free-surface slope 
As noted in the introduction, the variation of depth due to the free-surface slope is 
small compared to the topographic gradients used in the previous sections. However, 
when considering experiments over a flat bottom the effect of the free surface proves 
surprisingly important even at the low rotation rates used in the experiments. In  a 
series of experiments, cyclones were followed as they evolved over a flat bottom. 
Actually, taking account of the parabolic shape of the free surface, this can be 
thought of as motion over a parabolic hill. I n  the laboratory experiments, the 
cyclones were found to spiral in towards the centre of the tank, making excursions 
of length comparable to the tank diameter in one to two Ekman periods. This is 
illustrated in the first two panels of figure 9. The rotation rate in these experiments 
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FIGURE 9. Graphs showing the trajectories of cyclonic vortices in a rotating tank with a free surface 
and no bottom topography: (a) and ( b )  show the trajectories of two typical sink vortices in the 
laboratory experiments. The mean water depth was D = 20 cm and the rotation rate was SZ = 
1.0 5-l. In both cases, the inward part of the motion lasted for about 1W120 s before the looping 
motion began. The vortex of (a) was created by siphoning 3.2 1 of water in 13 s from the tank and 
that of ( b )  was created in a similar manner, but with 2.45 1 in 25 s .  The data points (circles) 
represent about half of the points used to plot these trajectories. The points shown in (a) correspond 
to the times 40, 70, 100, 130, 160, 190,220, 250,290, 330, 370,410, and 450 s after the forcing was 
stopped, and in ( b )  to times 17, 50, 30, 110, 140, 170, 220, 230, 260, 290, and 325 s. Panels (c) and 
( d )  show the trajectories of the motion of a sink vortex under a free surface in inviscid and viscous 
simulations respectively. The Ekman time (175 s ) ,  vorticity diffusion, and ' free-surface 
topography ' were based on a molecular viscosity of 0.013 cmz s-' and the values of D and SZ given 
above. The duration of these numerical simulations was 500 s. The computational domain size is 
100 x 100 cm. The centre of the domain is marked + . 
was SZ = 1.0 s-l which results in a parabolic curvature of the surface with an overall 
depth variation of about 1 cm. The vortices in these experiments were created by the 
suction method. The duration of the experiments was 5-7 min. It is important to 
note that in a constant-depth fluid (under a rigid lid) no such translationary motion 
is observed. In figure 9 (c, d) we show the respective trajectories of an inviscid and 
viscous simulation of a sink vortex under a free surface. The duration of the 
trajectories shown was 500 s. The number of loops in the inviscid simulation (figure 
9c) is almost double that found in the experiments. If viscosity is added to the 
simulations the number of loops is reduced, but instead of staying away from the 
centre of the domain, the vortex continues to spiral inwards (figure 9d). Some fine 
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tuning of initial conditions, boundary conditions and viscosity is necessary to bring 
the simulations into better agreement with the experiments ; however, the essential 
feature of the inward spiral and the gross characteristics of the trajectory are 
captured by these simulations. Numerical simulation and laboratory experiments 
(Kloosterziel & van Heijst 1991) show that stirred vortices under the free-surface 
slope also move in toward the centre. 

These results thus show that in the absence of stronger topographic effects, the 
free-surface slope can cause a significant motion of a vortex in the rotating tank. This 
is especially surprising in the light of dimensional arguments (cf. Flierl, Stern & 
Whitehead 1983) which would suggest that the free-surface effect is small. 
Specifically, if we form a dimensionless number from u, p, and /Ieff is computed from 
the largest free-surface slope, we find 

/Ieff c / p  < 0.003. (16) 

Naively, this number would seem to represent a ratio of the /I-effect to  pure 
advection ; however, its meaning cannot be that simple since for a radially symmetric 
vortex the purely advective terms cancel exactly in the equation of motion. In fact, 
the propagation speed of the vortex reaches a value of about 0.5 cm s-l, which is very 
significant for experiments in a tank of 50 cm radius and a spin-down time of 200 s. 
We suggest that this effect holds the answer to puzzles in past experimental work. 
Specifically, we note the strong discrepancy between theory and experiment pointed 
out by Griffiths & Hopfinger (1987) in the experimental verification of vortex 
mergers. Theory suggests no difference in the criteria for merger between cyclones 
and anticyclones. Griffiths & Hopfinger, however, have shown that in rotating-tank 
experiments with a free surface anticyclones obey the theory within experimental 
error, while the cyclones merge far more readily than the theory would allow. We 
speculate that the asymmetry is due to the free-surface /?-effect, which tends to bring 
the cyclones together a t  the tank centre, permitting a merger which otherwise would 
not have occurred. 

4. Discussion 
Based on our numerical simulations and rotating-tank experiments, we conclude 

that the tendency for a cyclone to propagate to the northwest on a /I-plane translates 
into a simple rule of thumb for propagation of cyclones over topography or through 
layer-thickness variations in general. Thus we expect cyclones to move toward the 
local northwest as defined by the local gradients of topography-by symmetry 
anticyclones will move to the local southwest. For a cyclone on a hill, this implies an 
anticyclonic spiral toward the top of the hill. For cyclones in a valley, it implies a 
cyclonic spiral climbing up out of the valley. The underlying physical mechanism 
here is inviscid vortex tube stretching and relies on nonlinear advection. These 
results also offer an explanation for the observed inward motion of cyclones created 
in a rotating tank with a free surface. We have found that viscous effects, specifically 
Ekman drag and horizontal vorticity diffusion, of the magnitude acting in the 
rotating-tank experiments, do not obscure the basic inviscid nonlinear tendency. 
Furthermore, by direct comparison we have shown that these results are valid for 
both isolated and non-isolated vortices. 

Simulations by McWilliams & Flierl (1979) and Mied & Lindemann (1979) 
demonstrate that the /I-plane effect also causes translation of stratified vortices. If a 
given stratified eddy has a strong barotropic component, we speculate that a bottom 
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slope may produce translation in the sense described above. In this regard, it is 
interesting to consider the comments of Mory, Stern & Griffiths (1987). They 
suggested that the observed propagation to the local northwest of lenses over a 
sloping bottom is a viscous effect driven by bottom friction ; however, they did note 
“Part of the northward movement of the lens might also be attributed to weak 
radiation of Rossby waves (McWilliams 6 Flier1 1979) or other inertial wake effects 
that cause the energy of the cyclone vortex to decrease. ... We were not able to 
provide a quantitative estimate of this second mechanism, but our analysis of the 
experiment indicates that it is a t  most as important as the effect of Ekman friction.” 
So further work on sorting the relative effects of viscosity and nonlinear radiation is 
needed, but the simple vortex stretching mechanisms at  work on a /3-plane may also 
translate into simple rules for the propagation of baroclinic vortices over topography. 

Finally, we note that there is something of a paradox posed by this mechanism 
which has cyclones climb hills and anticyclones descend into valleys. Previous work 
on flow over topography emphasized that the vorticity field should become 
anticorrelated with the topography, whereas the local northwest propagation rule 
tends to produce vorticity fields that are correlated with the topography. We have 
already mentioned that large-scale flow over topography creates an anticyclone over 
the topographic peak, but there is no contradiction there since the issue is one of 
scale, with the local northwest rule holding only when the horizontal scale of the 
vortex is small compared to that of the horizontal variations of topography. It is 
somewhat more interesting to consider the results of nonlinear stability theory and 
statistical theory. Based on considerations of the energy and potential enstrophy 
invariants of the flow, both of these theories predict states with relative vorticity 
anticorrelated with topography (cf. Bretherton & Haidvogell976 ; Salmon, Holloway 
& Hendershott 1976 ; Herring 1977 ; Carnevale & Frederiksen 1987). Thus, at first, 
the existence of a mechanism which tends to result in positive vortices over positive 
topography may appear contradictory. However, as pointed out in Carnevale & 
Frederiksen (1987), both the nonlinear stability and the statistical analysis of the 
flow over topography based only on energy and enstrophy must miss effects which 
rely on the pointwise conservation of potential vorticity. Hence, one must generalize 
the equilibrium distribution to contain more information than just energy and 
enstrophy conservation in order to capture such effects. There is no contradiction 
with statistical theory if one realizes that energy and enstrophy conservation alone 
cannot properly define the stationary ensemble. Similarly, as originally pointed out 
by Bretherton & Haidvogel (1978), the theory of nonlinear stability of flow over 
topography allows for more complicated relations between stream function and 
topography with the stability of such states relying on conservation of vorticity 
invariants other than enstrophy. 
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